Asymptotic Shape of Solutions to Nonlinear Eigenvalue Problems

نویسنده

  • TETSUTARO SHIBATA
چکیده

We consider the nonlinear eigenvalue problem −u′′(t) = f(λ, u(t)), u > 0, u(0) = u(1) = 0, where λ > 0 is a parameter. It is known that under some conditions on f(λ, u), the shape of the solutions associated with λ is almost ‘box’ when λ 1. The purpose of this paper is to study precisely the asymptotic shape of the solutions as λ → ∞ from a standpoint of L1-framework. To do this, we establish the asymptotic formulas for L1-norm of the solutions as λ→∞.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Analysis of Localized Solutions to Some Linear and Nonlinear Biharmonic Eigenvalue Problems

In an arbitrary bounded 2-D domain, a singular perturbation approach is developed to analyze the asymptotic behavior of several biharmonic linear and nonlinear eigenvalue problems for which the solution exhibits a concentration behavior either due to a hole in the domain, or as a result of a nonlinearity that is non-negligible only in some localized region in the domain. The specific form for t...

متن کامل

Self-similar evolution of Alfven wave turbulence

We study self-similar solutions of the kinetic equation for MHD wave turbulence derived in (Galtier S et al 2000 J. Plasma Phys. 63 447–88). Motivated by finding the asymptotic behaviour of solutions for initial value problems, we formulate a nonlinear eigenvalue problem comprising in finding a number x∗ such that the self-similar shape function f (η) would have a powerlaw asymptotic η−x ∗ at...

متن کامل

Asymptotic Expansion of Solutions to Nonlinear Elliptic Eigenvalue Problems

We consider the nonlinear eigenvalue problem −∆u+ g(u) = λ sinu in Ω, u > 0 in Ω, u = 0 on ∂Ω, where Ω ⊂ RN (N ≥ 2) is an appropriately smooth bounded domain and λ > 0 is a parameter. It is known that if λ 1, then the corresponding solution uλ is almost flat and almost equal to π inside Ω. We establish an asymptotic expansion of uλ(x) (x ∈ Ω) when λ 1, which is explicitly represented by g.

متن کامل

A Hardy Inequality with Remainder Terms in the Heisenberg Group and the Weighted Eigenvalue Problem

Based on properties of vector fields, we prove Hardy inequalities with remainder terms in the Heisenberg group and a compact embedding in weighted Sobolev spaces. The best constants in Hardy inequalities are determined. Then we discuss the existence of solutions for the nonlinear eigenvalue problems in the Heisenberg group with weights for the psub-Laplacian. The asymptotic behaviour, simplicit...

متن کامل

Spectral asymptotics for inverse nonlinear Sturm-Liouville problems

We consider the nonlinear Sturm-Liouville problem −u′′(t) + f(u(t), u′(t)) = λu(t), u(t) > 0, t ∈ I := (−1/2, 1/2), u(±1/2) = 0, where f(x, y) = |x|p−1x − |y|m, p > 1, 1 ≤ m < 2 are constants and λ > 0 is an eigenvalue parameter. To understand well the global structure of the bifurcation branch of positive solutions in R+ ×Lq(I) (1 ≤ q < ∞) from a viewpoint of inverse problems, we establish the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005